中文 | English
 
牟伯中

牟伯中,工学博士、教授、博士生导师,俄罗斯工程院外籍院士

生物采油教育部工程研究中心主任

IBB (Elsevier)AEB (Whioce)、微生物学杂志等5本学术刊物编委

中国化学会胶体与界面化学专业委员会委员

中国微生物学会地质微生物专业委员会委员

享受国务院政府特殊津贴,第十一届、十二届上海市政协委员


实验室地址:实验三楼225
联系电话: 021-64252063 
Email:
 [email protected]

欢迎化学、微生物学、生物工程及相关专业的学生加盟。

主要研究方向及成果:

主要从事油藏微生物和界面化学方面的研究工作。以极端环境多孔介质中微生物活动为背景,研究微生物生物地球化学过程与界面反应机制,包括 (1) 生物表面活性剂及生物基表面活性剂的结构与性能,(2) 石油烃厌氧生物降解产甲烷途径与生物标志物,(3) 油藏环境微生物群落结构与功能,以及 (4) 油藏微生物CO2生物转化途径与调控机制。目前的重点应用领域是生物表面活性剂、生物基表面活性剂和生物采油技术。近年来负责承担国家重点研发计划、国家863计划重点、国家自然科学基金重点、上海市基础研究重点项目及国际合作研究等多项重点科研任务。在国际学术刊物发表论文 (SCI) 200余篇,申请发明专利50余项 (其中授权专利32),已经实施转让和产业化的专利技术产生了良好的经济与社会效益。作为第一完成人获得国家科技进步二等奖、上海市科技进步一等奖、山东省高校优秀科研成果-自然科学类二等奖、中国产学研合作创新成果一等奖等科研成果奖。


教学方面,主讲本科生《物理化学》课程和研究生《生物物理化学》等课程。先后承担国家首批双语教学示范课程“《物理化学》双语教学示范课程” 和教育部 “工科化学系列课程双语教学体系的研究与建设”等教学研究项目。曾获宝钢优秀教师奖,铁算算盘4905香港来华留学生教育优秀指导教师,国家教学成果二等奖、上海市教学成果一等奖和铁算算盘4905香港教学成果一等奖等教学成果奖。


2010年以来承担的主要科研项目:

国家重点研发计划项目 (课题编号:2017YFB0308901,起止时间:2017-2021)

国家 863 计划重点项目 (课题编号:2009AA063503,起止时间:2009-2012)

国家自然科学基金重点项目 (项目编号:41530318,起止时间:2016-2020)

国家自然科学基金国际合作项目 (项目编号:4201101056,起止时间:2021-2024)

国家自然科学基金面上项目 (项目编号:52074192,起止时间:2021-2024)

国家自然科学基金面上项目(项目编号:51174092,起止时间:2012-2015)

国家自然科学基金国际合作项目 (项目编号:41161160560, 起止时间:2012-2014)

国家自然科学基金面上项目 (项目编号:41073055,起止时间:2011-2013)

上海市国际合作研究项目 (项目编号:18230743300,起止时间:2018-2020)

上海市基础研究重点项目 (项目编号:15JC1401400,起止时间:2015-2018)


Dr. Bo-Zhong Mu is a professor and the head of Institute of Applied Chemistry, East China University of Science and Technology (ECUST); the director of the Engineering Research Center for Microbial Enhanced Oil Recovery, the Ministry of Education, China.


Dr. Mu joined the East China University of Science and Technology as a full professor in the January 2001, where he heads a group in the interdisciplinary area of Microbial Enhance Oil Recovery. These interdisciplinary studies have been supported by the National Natural Science Foundation of China, the National High-Tech Research and Development Program, the International Joint Research programs, and by the industrial partners of PetroChina and SINOPEC. He has actively involved in the collaborative research with domestic and international communities.


He once worked at the laboratory for geodrilling fluid chemistry, China Coal Research Institute (Xian) after his graduation from Chengdu University of Technology in 1982 till 1995, where he was involved in studies of complex colloidal systems in geodrilling engineering, and received his M.S. degree in 1989. He studied Applied Chemistry, in particular, the interfacial chemistry of porous media and fundamentals for enhanced oil recovery at the state key laboratory headed by Academician Pingya Luo in the Southwest Petroleum University. After received his Ph.D. in Applied Chemistry in 1998, he moved to the Ocean University of Qingdao for his postdoctoral research, and the University of Wyoming (USA) for the research in microbial enhanced oil recovery (MEOR).

  
His Research interests focus on the chemical & biological fundamentals for enhanced oil recovery, including interfacial behavior & microbial transport in porous media, bio-based surfactants & their molecular aggregates, and molecular microbial community & biodegradation in petroleum reservoirs. His interests also lie in the extension of the research to application with industrial partners, covering MEOR, the methanegenic production from residue oil, and CO
2 biotransformation & biofixation in situ oil reservoirs. Since joining ECUST in 2001, He has published 200+ peer-reviewed articles, and was awarded the First Class Prize of Shanghai Science and Technology Progress Award in 2008 and the Second Class Prize of National Science and Technology Progress Award in 2010.


Teaching duties involve a number of Chemistry and Biotechnology classes at BSc, MSc and PhD levels, including the courses of Physical Chemistry, Biophysical Chemistry, and Energy Biotechnology.


Selected peer-reviewed articles

Bio-surfactants & Bio-based Surfactants:

  1. Gang H-Z, He H, Yu Z-Q, Wang Z-Y, Liu J-F, He X-J, Bao X-N, Li Y-C* & Mu B-Z*. A coarse-grained model for microbial lipopeptide surfactin and its application in self-assembly. J Phys Chem B, 2020, 124: 1839-1846

  2. Gang H-Z, Galvagnion C, Müller T, Buell A K, Levin A, Dobson C M*, Mu B-Z*& Knowles TPJ*. Characterisation of the interactions between α-synuclein and lipid vesicles under native conditions from microfluidic measurements of molecular diffusivity. Anal Chem, 2018, 90:3284-3290

  3. Gang H-Z, Liu J-F & Mu B-Z*. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: a molecular dynamics simulation study. BBA - Biomembranes, 2015, 1848:1955-1962

  4. She A-Q, Gang H-Z & Mu B-Z*. Temperature influence on the structure and interfacial properties of surfactin micelle: a molecular dynamics simulation study. J Phys Chem B, 2012, 116: 12735-12743

  5. Gang H-Z, Liu J-F & Mu B-Z*. Molecular dynamics study of surfactin monolayer at the air/water interface. J Phys Chem B, 2011, 115: 12770-12777  

  6. Gang H-Z, Liu J-F & Mu B-Z*. Interfacial behavior of surfactin at the decane/water interface: a molecular dynamics simulation. J Phys Chem B, 2010, 114: 14947-14954

  7. Gang H-Z, Liu J-F & Mu B-Z*. Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. J Phys Chem B, 2010, 114: 2728-2737

  8. Zou A-H, Liu J, Garamus V, Yang Y, Willumeit Regine & Mu B-Z*. Micellization activity of the natural lipopeptide, [Glu1, Asp5] surfactin-C15 in aqueous solution. J Phys Chem B, 2010,114: 2712–2718

  9. Liu X-Y, Tao X-Y, Zou A-H, Yang S-Z, Zhang L-X* & Mu B-Z*. Effect of a microbial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein & Cell, 2010,1(6): 584-594

  10. Li Y, Zou A-H, Ye R-Q & Mu B-Z*. Counterion-induced changes to the micellization of surfactin-C16 aqueous solution. J Phys Chem B, 2009, 113: 15272 -15277

Biodegradation of Hydrocarbons in Depleted Oil Reservoirs:

  1. Liu Y-F, Chen J, Liu Z-L, ShouL-B, Lin D-D, Zhou L, Yang S-Z, Liu J-F, Li W, Gu J-D & Mu B-Z*. Anaerobic degradation of paraffins by a novel class-level lineage of syntrophic Actinobacteria under methanogenic condition. Environ Sci & Technol, 2020, 54:10610-10620

  2. Liu Y-F, Chen J, Zaramela L, Wang L-Y, Mbadinga MS, Hou Z-W, Wu X-L, Gu J-D Zengler K* & Mu B-Z*. Genomic and transcriptomic evidence supports methane metabolism in Archaeoglobi. mSystems, 2020, 5,19

  3. Liu Y-F, Qi Z-Z, Shou L-B, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’ (JS1) inferred from genomics. ISEM J, 2019, 13: 2377–2390

  4. Ji J-H, Liu Y-F, Zhou L, Mbadinga SM, Pan P, Chen J, Liu J-F, Yang S-Z, Sand W, Gu J-D* & Mu B-Z*. Evidences for the initial activation by fumarate addition mechanism in methanogenic degradation of long n-alkanes, Appl Environ Microbiol 85, 2019, e00985-19

  5. Chen J, Liu Y-F, Zhou L, Mbadinga SM, Yang T, Zhou J, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotech, 2019, 103:2391–2401

  6. Liu Y-F, Galzerani D D, Mbadinga S M, Zaramela LS, Gu J-D Mu B-Z* & Zengler K*. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome, 2018, 6:5

  7. Pan P, Hong B, Mbadinga SM, Wang L-Y, Liu J-F, Yang S-Z, Gu J-D & Mu BZ*. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Appl Microbiol Biotech, 2017,101: 7053-7063

  8. Li C-Y, Zhang D, Li X-X, Mbadinga SM, Yang S-Z, Liu J-F, Gu J-D & Mu B-Z*. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. Journal of Hazardous Materials, 2016, 304: 388–399

  9. Mbadinga SM, Li K-P, Zhou L, Wang L-Y, Yang S-Z, Liu J-F, Gu J-D & Mu B-Z*. Analysis of alkane-dependent methanogenic community derived from production water of high temperature petroleum reservoir. Appl Microbiol Biotech, 2012, 96:531-42

  10. Wang L-Y, Li W, Mbadinga SM, Liu J-F, Gu J-D & Mu B-Z*. Microbial community shift correlated with the carbon available enriched from an oily sludge over 500 days of methanogenic incubation. Geomicrobiol J, 2012, 29:716-726

Biotransformation of CO2 in Petroleum Reservoirs & CCUS:

  1. Liang T-T, Zhou L, Irfan M, Bai Y, Liu X-Z, Zhang J-L Wu Z-Y Wang W-Z Liu J-F Cheng L, Yang S-Z, Ye R-Q, Gu J-D & Mu B-Z*. Assessment of five electron shuttling molecules in extracellular electron transfer of electromethanogenesis by Methanosarcina barkeri. ChemElectroChem, 2020, 7: 3783-3789

  2. Bai Y, Zhou L, Irfan M, Liang T-T, Cheng L, Liu Y-F, Liu J-F, Yang S-Z, Sand W, Gu J-D & Mu B-Z*. Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron transfer. Energy, 2020, 210,118455

  3. Yuan S, Gang H-Z, Zhou L, Liang T-T, Irfan M, Kazmi M, Liu J-F, Yang S-Z & Mu B-Z*. Insight into the Adsorption Mechanism of CO2, CH4, and their Mixtures on Kerogen Type IIIA, Energy & Fuels, 2020, 34: 14300-14311

  4. Irfan M, Zhou L, Ji J-H, Chen J, Yuan S, Liang T-T, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals. RenewableEnergy, 2020,159:585-594

  5. Irfan M, Zhou L, Ji J-H, Yuan S, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Energy recovery from the carbon dioxide for green and sustainable environment using iron minerals as electron donor. J Clean Prod, 2020, 277, 124134

  6. Irfan M, Zhou L, Bai Y, Yuan S, Liang T-T, Liu Y-F, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z *. Insights into the H2 generation from water-iron rock reactions at low temperature and the key limiting factors in the process. Int’l J Hydrogen Energy, 2019, 44: 18007-180018

  7. Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Mbadinga SM, Yang S-Z, Jin Liu F, Sand W, Gu J-D & Mu B-Z*. Direct microbial transformation of of CO2 to value-added chemicals: A comprehensive analysis and application potentials, Bioresource Technology, 2019, 288:121401

  8. Ma L, Zhou, Ruan M-Y, Gu J-D & Mu B-Z*. Simultaneous methanogenesis and acetogenesis from CO2 by enrichment cocultures supplemented with ZVI, Renewable Energy, 2019, 132:861-870

  9. Ma L, Zhou L, Mbadinga SM, Gu J-D & Mu B-Z*. Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy, 2018, 147:663-671

  10. Yang G-C, Zhou L, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Formate-dependent microbial conversion of CO2 and the dominant pathways of Methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate. Front Microbiol, 2016, 7, 365

Microbiologically Influenced Corrosion (MIC) in Oil Fields:

  1. Zhou L, Wang D-W, Zhang S-L, Tang E-G, Lu Y-W, Jing Y-F, Lin D-D, Liu Z-L, Liu J-F, Yang S-Z, Zhang J*, Gu J-D & Mu B-Z*. Functional microorganisms involved in the sulfur and nitrogen 2 metabolism in production water from a high-temperature offshore 3 petroleum reservoir. IBB, 2020, 154,105057

  2. Li X-X, Yang T, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front Microbiol, 2017, 8,2379

  3. Li X-X, Liu J-F, Zhou L, Mbadinga S M, Yang S-Z, Gu J-D & Mu B-Z*. Diversity and composition of sulfate-reducing microbial communities based on genomic DNA and RNA transcription in production water of a high temperature and corrosive oil reservoir. Front Microbiol, 2017, 8, 1011

  4. Li X-X, Mbadinga SM , Liu J-F, Zhou L, Yang S-Z, Gu J-D & Mu B-Z*. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. IBB, 2017, 120 170-185

  5. Li C-Y, Hu H, Feng J-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Diversity and abundance of ammonia-oxidizing bacteria (AOB) revealed by amoA gene in a polyacrylamide transportation system of an oil field. IBB, 2016, 115:110-118

  6. Li X-X, Liu J-F, Yang S-Z, Mbadinga SM, Gu J-D & Mu B-Z*. Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. IBB, 2016, 114: 45-56

  7. Guan J, Zhang B-L, Mbadinga S M, Liu J-F, Gu J-D & Mu B-Z*. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl Microbiol Biotech, 2014, 98:1871-1882

  8. Guan J, Xia L-P, Wang L-Y, Liu J-F, Gu G-D & Mu B-Z*. Diversity and distribution of sulfate- reducing bacterial communities in four different petroleum reservoirs using 16S rRNA gene from nested PCR and dsrAB gene. IBB, 2013, 76:58-66

  9. Li W, Wang L-Y, Duan R-Y, Liu J-F, Gu G-D & Mu B-Z*. Microbial community composition in n-alkanes -amended enrichment cultures of nitrate-reducing, sulfate-reducing and methanogenic conditions from production water of a mesophilic petroleum reservoir. IBB, 2012, 69: 87-96

  10. Feng W-W, Liu J-F, Gu G-D & Mu B-Z*. Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase gene (napA). IBB, 2011, 65 :1081- 1086

Microbial Communities in Petroleum Reservoirs & Enhanced Energy Recovery:

  1. Liu J-F, Feng J-Y, Yang S-Z, Gang H-Z & Mu B-Z*. The recovery of viscosity of HPAM solution in presence of high concentration sulfide ions. J Petrol Sci Eng, 2020, 195,107605

  2. Zhou Z-C, Liang B, Wang L-Y, Liu JF, Mu B-Z*, Shim H & Gu J-D*. Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China. Biogeosciences, 2019,16:4229-4241

  3. Liu J-F, Feng J-Y, Hu H, Li C-Y, Yang S-Z, Gu J-D & Mu B-Z*. Decrease in viscosity of partially hydrolyzed polyacrylamide solution caused by the interaction between sulfide ion and amide group, J Petrol Sci Eng, 2018, 170: 738-743

  4. Liang B, Zhang K, Wang L-Y, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Insight into archaeal communities in the aqueous and oil phases of production fluid from a high-temperature petroleum reservoir. Front Microbiol, 2018, 9, 841

  5. You J, Wu G, Ren F-P, Qi C, Yu B*, Xue Y-F & Mu B-Z*. Microbial community dynamics in Baolige oilfield during MEOR treatment revealed by Illumina MiSeq sequencing,  Appl Microbiol Biotech, 2016, 100: 1469 -1478

  6. Wang L-Y, Sun X-B, Liu J-F, Gu J-D & Mu B-Z*. Comparison of bacterial community in aqueous and oil phases of the water-flooded petroleum reservoir using Pyrosequencing and clone library approaches. Appl Microbiol Biotech, 2014, 98:4209-4221

  7. Wang L-Y, Duan R-Y, Liu J-F, Yang S-Z, Gu J-D & Mu B-Z*. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences, 2012, 9: 4645-4659

  8. Li H, Yang S-Z & Mu B-Z*, et al. Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS microbiol ecol, 2007, 60: 74-84

  9. Li H, Yang S-Z & Mu B-Z*, et al. Molecular analysis of bacterial community structure in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett, 2006, 257: 92-98

  10. Liu J-F, Ma L-J & Mu B-Z*, et al. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J Petrol Sci Eng, 2005, 48:265-271


Book Chapters:

牟伯中. 油藏微生物//中国科学院 “深地生物圈” 项目组. 深部地下生物圈. 北京: 科学出版社, 2020, pp134-144 (ISBN 978-7-03-062253-2)

Li H, Mu B-Z. Chapter 2: Methanogenes and Ammonia-Oxidation Archaeal Communities in High Temperature Oil Reservoirs//Sakura Y. Katô, (ed.) Archaea: Structure, Habitats and Ecological Significance, New York, Nova Science Publishers, 2011, pp39-68 (ISBN: 978-1-61761-932-8).


Presentations

  1. 牟伯中. 油藏环境微生物群落结构与功能. 中国科学院科学与技术前沿论坛-中国地下深部生物圈计划,2018-03-16, 北京 (Invited)

  2. 牟伯中. 油藏环境CO2生物转化与利用. 中国工程院CCUS二氧化碳驱油与埋存工程前沿技术研讨,2017-09-11, 南京 (Invited)

  3. 牟伯中. 油藏环境石油烃厌氧降解产甲烷的途径与生物标志. 第六届全国地质微生物学研讨会, 2017-6-10, 广州 (Invited)

  4. Mu B-Z. Microbial communities in subsurface petroleum reservoirs and their potentials in microbial enhanced energy recovery. 10th International Congress on Chemical Engineering and Biotechnology, 9-12 May, 2016, Beijing (Invited)

  5. Mu B-Z. Role of microbial community in subsurface petroleum reservoirs. Sino German Workshop on Microbial Enhanced Oil Recovery, 20-24 April, 2015 Leipzig, Germany (Invited)

  6. Mu B-Z. Bio-based surfactant for enhanced oil recovery and oil spill treatment, ACHEMA 2015 Congress, 15-19 June, 2015, Frankfurt, Germany (Invited)

  7. Mu B-Z. Biobased Surfactants. ECF2015 5th Asia Shale Gas Summit,12-14 Oct. 2015, Shanghai (Invited)

  8. Mu B-Z. Role of microbial community in subsurface petroleum reservoirs: the potential application in microbial enhanced energy recovery. China-US Joint Annual Symposium, Water, Energy, and Ecosystem Sustainable Development, 26-28 Oct, 2014, Hefei (keynote)

  9. Mu B-Z. Detection of signature biomarkers implicated in anaerobic degradation of hydrocarbons in petroleum reservoirs via Mass spectral characteristics of chemically synthesized alkylsuccinates. International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-4), 25-28 Aug, 2013, Rio, Brazil (Invited)

  10. Mu B-Z. Identification of alkylsuccinate synthase genes and characterization of microbial community structure in distinct petroleum reservoirs fluids of China, International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-3), 13-15 June, 2011, Calgary (Invited)

 

网页发布时间: 2014-11-19 11:05